本文目录一览:
- 1、Apache Flink和Apache Spark有什么异同?它们的发展前景分别怎样
- 2、科普Spark,Spark是什么,如何使用Spark
- 3、海量数据存储有哪些方式与方法
- 4、Apache Flink现在在大数据处理方面能够和Apache Spark分庭抗礼么
- 5、15 个开源的顶级人工智能工具
Apache Flink和Apache Spark有什么异同?它们的发展前景分别怎样
Apache Fink是一种大规模的数据处理工具,它以大数据量的低数据延迟和高容错性快速处理大数据。它的定义特征是它能够实时处理流数据。
Apache Spark是专为大规模数据处理而设计的快速通用的计算引擎,是一种与 Hadoop 相似的开源集群计算环境。
相同点:
都是apache 软件基金会(ASF)旗下顶级项目,都是通用数据处理平台。它们可以应用在很多的大数据应用和处理环境。两者均可在不依赖于其他环境的情况下运行于standalone模式,或是运行在基于hadoop(YARN,HDFS)之上,由于它们均是运行于内存,所以他们表现的都比hadoop要好很多。
二者的不同:
Flink在进行集合的迭代转换时可以是循环或是迭代计算处理。flink的流式处理的是真正的流处理。流式数据一旦进入就实时进行处理,这就允许流数据灵活地在操作窗口。
Spark 在另一方面是基于弹性分布式数据集(RDD),这(主要的)给于spark基于内存内数据结构的函数式编程。它可以通过固定的内存给于大批量的计算。
科普Spark,Spark是什么,如何使用Spark
科普Spark,Spark是什么,如何使用Spark
1.Spark基于什么算法的分布式计算(很简单)
2.Spark与MapReduce不同在什么地方
3.Spark为什么比Hadoop灵活
4.Spark局限是什么
5.什么情况下适合使用Spark
什么是Spark
Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。其架构如下图所示:
Spark与Hadoop的对比
Spark的中间数据放到内存中,对于迭代运算效率更高。
Spark更适合于迭代运算比较多的ML和DM运算。因为在Spark里面,有RDD的抽象概念。
Spark比Hadoop更通用
Spark提供的数据集操作类型有很多种,不像Hadoop只提供了Map和Reduce两种操作。比如map, filter, flatMap, sample, groupByKey, reduceByKey, union, join, cogroup, mapValues, sort,partionBy等多种操作类型,Spark把这些操作称为Transformations。同时还提供Count, collect, reduce, lookup, save等多种actions操作。
这些多种多样的数据集操作类型,给给开发上层应用的用户提供了方便。各个处理节点之间的通信模型不再像Hadoop那样就是唯一的Data Shuffle一种模式。用户可以命名,物化,控制中间结果的存储、分区等。可以说编程模型比Hadoop更灵活。
不过由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。
容错性
在分布式数据集计算时通过checkpoint来实现容错,而checkpoint有两种方式,一个是checkpoint data,一个是logging the updates。用户可以控制采用哪种方式来实现容错。
可用性
Spark通过提供丰富的Scala, Java,Python API及交互式Shell来提高可用性。
Spark与Hadoop的结合
Spark可以直接对HDFS进行数据的读写,同样支持Spark on YARN。Spark可以与MapReduce运行于同集群中,共享存储资源与计算,数据仓库Shark实现上借用Hive,几乎与Hive完全兼容。
Spark的适用场景
Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小但是计算密集度较大的场合,受益就相对较小(大数据库架构中这是是否考虑使用Spark的重要因素)
由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。总的来说Spark的适用面比较广泛且比较通用。
运行模式
本地模式
Standalone模式
Mesoes模式
yarn模式
Spark生态系统
Shark ( Hive on Spark): Shark基本上就是在Spark的框架基础上提供和Hive一样的H iveQL命令接口,为了最大程度的保持和Hive的兼容性,Shark使用了Hive的API来实现query Parsing和 Logic Plan generation,最后的PhysicalPlan execution阶段用Spark代替Hadoop MapReduce。通过配置Shark参数,Shark可以自动在内存中缓存特定的RDD,实现数据重用,进而加快特定数据集的检索。同时,Shark通过UDF用户自定义函数实现特定的数据分析学习算法,使得SQL数据查询和运算分析能结合在一起,最大化RDD的重复使用。
Spark streaming: 构建在Spark上处理Stream数据的框架,基本的原理是将Stream数据分成小的时间片断(几秒),以类似batch批量处理的方式来处理这小部分数据。Spark Streaming构建在Spark上,一方面是因为Spark的低延迟执行引擎(100ms+)可以用于实时计算,另一方面相比基于Record的其它处理框架(如Storm),RDD数据集更容易做高效的容错处理。此外小批量处理的方式使得它可以同时兼容批量和实时数据处理的逻辑和算法。方便了一些需要历史数据和实时数据联合分析的特定应用场合。
Bagel: Pregel on Spark,可以用Spark进行图计算,这是个非常有用的小项目。Bagel自带了一个例子,实现了Google的PageRank算法。
End.
海量数据存储有哪些方式与方法
杉岩海量对象存储MOS,针对海量非结构化数据存储的最优化解决方案,采用去中心化、分布式技术架构,支持百亿级文件及EB级容量存储,
具备高效的数据检索、智能化标签和分析能力,轻松应对大数据和云时代的存储挑战,为企业发展提供智能决策。
1、容量可线性扩展,单名字空间达EB级
SandStone MOS可在单一名字空间下实现海量数据存储,支持业务无感知的存储服务器横向扩容,为爆炸式增长的视频、音频、图片、文档等不同类型的非结构化数据提供完美的存储方案,规避传统NAS存储的单一目录或文件系统存储空间无法弹性扩展难题
2、海量小文件存储,百亿级文件高效访问
SandStone MOS基于完全分布式的数据和元数据存储架构,为海量小文件存储而生,将企业级NAS存储的千万文件量级提升至互联网规模的百亿级别,帮助企业从容应对几何级增长的海量小文件挑战。
3、中心灵活部署,容灾汇聚分发更便捷
SandStone MOS支持多数据中心灵活部署,为企业数据容灾、容灾自动切换、多分支机构、数据就近访问等场景提供可自定义的灵活解决方案,帮助企业实现跨地域多活容灾、数据流转、就近读写等,助力业务高速发展。
4、支持大数据和AI,统一数据存储和分析
SandStone MOS内置文件智能化处理引擎,实现包括语音识别、图片OCR识别、文件格式转换等批量处理功能,结合标签检索能力还可实现语音、证件照片检索,从而帮助企业更好地管理非结构化数据。同时,SandStone MOS还支持与Hadoop、Spark等大数据分析平台对接,一套存储即可满足企业数据存储、管理和挖掘的需求。
Apache Flink现在在大数据处理方面能够和Apache Spark分庭抗礼么
我们是否还需要另外一个新的数据处理引擎?当我第一次听到flink的时候这是我是非常怀疑的。在大数据领域,现在已经不缺少数据处理框架了,但是没有一个框架能够完全满足不同的处理需求。自从Apache spark出现后,貌似已经成为当今把大部分的问题解决得最好的框架了,所以我对另外一款解决类似问题的框架持有很强烈的怀疑态度。
不过因为好奇,我花费了数个星期在尝试了解flink。一开始仔细看了flink的几个例子,感觉和spark非常类似,心理就倾向于认为flink又是一个模仿spark的框架。但是随着了解的深入,这些API体现了一些flink的新奇的思路,这些思路还是和spark有着比较明显的区别的。我对这些思路有些着迷了,所以花费了更多的时间在这上面。
flink中的很多思路,例如内存管理,dataset API都已经出现在spark中并且已经证明 这些思路是非常靠谱的。所以,深入了解flink也许可以帮助我们分布式数据处理的未来之路是怎样的
在后面的文章里,我会把自己作为一个spark开发者对flink的第一感受写出来。因为我已经在spark上干了2年多了,但是只在flink上接触了2到3周,所以必然存在一些bias,所以大家也带着怀疑和批判的角度来看这篇文章吧。
Apache Flink是什么
flink是一款新的大数据处理引擎,目标是统一不同来源的数据处理。这个目标看起来和spark和类似。没错,flink也在尝试解决spark在解决的问题。这两套系统都在尝试建立一个统一的平台可以运行批量,流式,交互式,图处理,机器学习等应用。所以,flink和spark的目标差别并不大,他们最主要的区别在于实现的细节。
后面我会重点从不同的角度对比这两者。
Apache Spark vs Apache Flink
1.抽象 Abstraction
spark中,对于批处理我们有RDD,对于流式,我们有DStream,不过内部实际还是RDD.所以所有的数据表示本质上还是RDD抽象。
后面我会重点从不同的角度对比这两者。在flink中,对于批处理有DataSet,对于流式我们有DataStreams。看起来和spark类似,他们的不同点在于:
一)DataSet在运行时是表现为运行计划(runtime plans)的
在spark中,RDD在运行时是表现为java objects的。通过引入Tungsten,这块有了些许的改变。但是在flink中是被表现为logical plan(逻辑计划)的,听起来很熟悉?没错,就是类似于spark中的dataframes。所以在flink中你使用的类Dataframe api是被作为第一优先级来优化的。但是相对来说在spark RDD中就没有了这块的优化了。
flink中的Dataset,对标spark中的Dataframe,在运行前会经过优化。
在spark 1.6,dataset API已经被引入spark了,也许最终会取代RDD 抽象。
二)Dataset和DataStream是独立的API
在spark中,所有不同的API,例如DStream,Dataframe都是基于RDD抽象的。但是在flink中,Dataset和DataStream是同一个公用的引擎之上两个独立的抽象。所以你不能把这两者的行为合并在一起操作,当然,flink社区目前在朝这个方向努力(),但是目前还不能轻易断言最后的结果。
2.内存管理
一直到1.5版本,spark都是试用java的内存管理来做数据缓存,明显很容易导致OOM或者gc。所以从1.5开始,spark开始转向精确的控制内存的使用,这就是tungsten项目了
flink从第一天开始就坚持自己控制内存试用。这个也是启发了spark走这条路的原因之一。flink除了把数据存在自己管理的内存以外,还直接操作二进制数据。在spark中,从1.5开始,所有的dataframe操作都是直接作用在tungsten的二进制数据上。
3.语言实现
spark是用scala来实现的,它提供了Java,Python和R的编程接口。
flink是java实现的,当然同样提供了Scala API
所以从语言的角度来看,spark要更丰富一些。因为我已经转移到scala很久了,所以不太清楚这两者的java api实现情况。
4.API
spark和flink都在模仿scala的collection API.所以从表面看起来,两者都很类似。下面是分别用RDD和DataSet API实现的word count
// Spark wordcount
object WordCount {
def main(args: Array[String]) {
val env = new SparkContext("local","wordCount")
val data = List("hi","how are you","hi")
val dataSet = env.parallelize(data)
val words = dataSet.flatMap(value = value.split("\\s+"))
val mappedWords = words.map(value = (value,1))
val sum = mappedWords.reduceByKey(_+_)
println(sum.collect())
}
}
// Flink wordcount
object WordCount {
def main(args: Array[String]) {
val env = ExecutionEnvironment.getExecutionEnvironment
val data = List("hi","how are you","hi")
val dataSet = env.fromCollection(data)
val words = dataSet.flatMap(value = value.split("\\s+"))
val mappedWords = words.map(value = (value,1))
val grouped = mappedWords.groupBy(0)
val sum = grouped.sum(1)
println(sum.collect())
}
}
不知道是偶然还是故意的,API都长得很像,这样很方便开发者从一个引擎切换到另外一个引擎。我感觉以后这种Collection API会成为写data pipeline的标配。
Steaming
spark把streaming看成是更快的批处理,而flink把批处理看成streaming的special case。这里面的思路决定了各自的方向,其中两者的差异点有如下这些:
实时 vs 近实时的角度
flink提供了基于每个事件的流式处理机制,所以可以被认为是一个真正的流式计算。它非常像storm的model。
而spark,不是基于事件的粒度,而是用小批量来模拟流式,也就是多个事件的集合。所以spark被认为是近实时的处理系统。
Spark streaming 是更快的批处理,而Flink Batch是有限数据的流式计算。
虽然大部分应用对准实时是可以接受的,但是也还是有很多应用需要event level的流式计算。这些应用更愿意选择storm而非spark streaming,现在,flink也许是一个更好的选择。
流式计算和批处理计算的表示
spark对于批处理和流式计算,都是用的相同的抽象:RDD,这样很方便这两种计算合并起来表示。而flink这两者分为了DataSet和DataStream,相比spark,这个设计算是一个糟糕的设计。
对 windowing 的支持
因为spark的小批量机制,spark对于windowing的支持非常有限。只能基于process time,且只能对batches来做window。
而Flink对window的支持非常到位,且Flink对windowing API的支持是相当给力的,允许基于process time,data time,record 来做windowing。
我不太确定spark是否能引入这些API,不过到目前为止,Flink的windowing支持是要比spark好的。
Steaming这部分flink胜
SQL interface
目前spark-sql是spark里面最活跃的组件之一,Spark提供了类似Hive的sql和Dataframe这种DSL来查询结构化数据,API很成熟,在流式计算中使用很广,预计在流式计算中也会发展得很快。
至于flink,到目前为止,Flink Table API只支持类似DataFrame这种DSL,并且还是处于beta状态,社区有计划增加SQL 的interface,但是目前还不确定什么时候才能在框架中用上。
所以这个部分,spark胜出。
Data source Integration
Spark的数据源 API是整个框架中最好的,支持的数据源包括NoSql db,parquet,ORC等,并且支持一些高级的操作,例如predicate push down
Flink目前还依赖map/reduce InputFormat来做数据源聚合。
这一场spark胜
Iterative processing
spark对机器学习的支持较好,因为可以在spark中利用内存cache来加速机器学习算法。
但是大部分机器学习算法其实是一个有环的数据流,但是在spark中,实际是用无环图来表示的,一般的分布式处理引擎都是不鼓励试用有环图的。
但是flink这里又有点不一样,flink支持在runtime中的有环数据流,这样表示机器学习算法更有效而且更有效率。
这一点flink胜出。
Stream as platform vs Batch as Platform
Spark诞生在Map/Reduce的时代,数据都是以文件的形式保存在磁盘中,这样非常方便做容错处理。
Flink把纯流式数据计算引入大数据时代,无疑给业界带来了一股清新的空气。这个idea非常类似akka-streams这种。
成熟度
目前的确有一部分吃螃蟹的用户已经在生产环境中使用flink了,不过从我的眼光来看,Flink还在发展中,还需要时间来成熟。
结论
目前Spark相比Flink是一个更为成熟的计算框架,但是Flink的很多思路很不错,Spark社区也意识到了这一点,并且逐渐在采用Flink中的好的设计思路,所以学习一下Flink能让你了解一下Streaming这方面的更迷人的思路。
15 个开源的顶级人工智能工具
斯坦福的专家在人工智能报告中得出的结论:"越来越强大的人工智能应用,可能会对我们的 社会 和经济产生深远的积极影响,这将出现在从现在到2030年的时间段里。"
以下这些开源人工智能应用都处于人工智能研究的最前沿。
1.Caffe
它是由贾扬清在加州大学伯克利分校的读博时创造的,Caffe是一个基于表达体系结构和可扩展代码的深度学习框架。使它声名鹊起的是它的速度,这让它受到研究人员和企业用户的欢迎。根据其网站所言,它可以在一天之内只用一个NVIDIA K40 GPU处理6000万多个图像。它是由伯克利视野和学习中心(BVLC)管理的,并且由NVIDIA和亚马逊等公司资助来支持它的发展。
2. CNTK
它是计算机网络工具包(Computational Network Tookit)的缩写,CNTK是一个微软的开源人工智能工具。不论是在单个CPU、单个GPU、多个GPU或是拥有多个GPU的多台机器上它都有优异的表现。微软主要用它做语音识别的研究,但是它在机器翻译、图像识别、图像字幕、文本处理、语言理解和语言建模方面都有着良好的应用。
3.Deeplearning4j
Deeplearning4j是一个java虚拟机(JVM)的开源深度学习库。它运行在分布式环境并且集成在Hadoop和Apache Spark中。这使它可以配置深度神经网络,并且它与Java、Scala和其他JVM语言兼容。
4.DMTK
DMTK分布式集齐学习工具(Distributed Machine Learning Toolkit)的缩写,和CNTK一样,是微软的开源人工智能工具。作为设计用于大数据的应用程序,它的目标是更快的训练人工智能系统。它包括三个主要组件:DMTK框架、LightLDA主题模型算法和分布式(多义)字嵌入算法。为了证明它的速度,微软声称在一个八集群的机器上,它能够"用100万个主题和1000万个单词的词汇表(总共10万亿参数)训练一个主题模型,在一个文档中收集1000亿个符号,"。这一成绩是别的工具无法比拟的。
5.H20
相比起科研,H2O更注重将AI服务于企业用户,因此H2O有着大量的公司客户,比如第一资本金融公司、思科、Nielsen Catalina、PayPal和泛美都是它的用户。它声称任何人都可以利用机器学习和预测分析的力量来解决业务难题。它可以用于预测建模、风险和欺诈分析、保险分析、广告技术、医疗保健和客户情报。
它有两种开源版本:标准版H2O和Sparking Water版,它被集成在Apache Spark中。也有付费的企业用户支持。
6.Mahout
它是Apache基金会项目,Mahout是一个开源机器学习框架。根据它的网站所言,它有着三个主要的特性:一个构建可扩展算法的编程环境、像Spark和H2O一样的预制算法工具和一个叫Samsara的矢量数学实验环境。使用Mahout的公司有Adobe、埃森哲咨询公司、Foursquare、英特尔、领英、Twitter、雅虎和其他许多公司。其网站列了出第三方的专业支持。
7.MLlib
由于其速度,Apache Spark成为一个最流行的大数据处理工具。MLlib是Spark的可扩展机器学习库。它集成了Hadoop并可以与NumPy和R进行交互操作。它包括了许多机器学习算法如分类、回归、决策树、推荐、集群、主题建模、功能转换、模型评价、ML管道架构、ML持久、生存分析、频繁项集和序列模式挖掘、分布式线性代数和统计。
8.NuPIC
由Numenta公司管理的NuPIC是一个基于分层暂时记忆理论的开源人工智能项目。从本质上讲,HTM试图创建一个计算机系统来模仿人类大脑皮层。他们的目标是创造一个"在许多认知任务上接近或者超越人类认知能力"的机器。
除了开源许可,Numenta还提供NuPic的商业许可协议,并且它还提供技术专利的许可证。
9.OpenNN
作为一个为开发者和科研人员设计的具有高级理解力的人工智能,OpenNN是一个实现神经网络算法的c++编程库。它的关键特性包括深度的架构和快速的性能。其网站上可以查到丰富的文档,包括一个解释了神经网络的基本知识的入门教程
10.OpenCyc
由Cycorp公司开发的OpenCyc提供了对Cyc知识库的访问和常识推理引擎。它拥有超过239,000个条目,大约2,093,000个三元组和大约69,000 owl:这是一种类似于链接到外部语义库的命名空间。它在富领域模型、语义数据集成、文本理解、特殊领域的专家系统和 游戏 AI中有着良好的应用。该公司还提供另外两个版本的Cyc:一个可免费的用于科研但是不开源,和一个提供给企业的但是需要付费。
11.Oryx 2
构建在Apache Spark和Kafka之上的Oryx 2是一个专门针对大规模机器学习的应用程序开发框架。它采用一个独特的三层λ架构。开发者可以使用Orys 2创建新的应用程序,另外它还拥有一些预先构建的应用程序可以用于常见的大数据任务比如协同过滤、分类、回归和聚类。大数据工具供应商Cloudera创造了最初的Oryx 1项目并且一直积极参与持续发展。
12.PredictionIO
今年的二月,Salesforce收购了PredictionIO,接着在七月,它将该平台和商标贡献给Apache基金会,Apache基金会将其列为孵育计划。所以当Salesforce利用PredictionIO技术来提升它的机器学习能力时,成效将会同步出现在开源版本中。它可以帮助用户创建带有机器学习功能的预测引擎,这可用于部署能够实时动态查询的Web服务。
13.SystemML
最初由IBM开发,SystemML现在是一个Apache大数据项目。它提供了一个高度可伸缩的平台,可以实现高等数学运算,并且它的算法用R或一种类似python的语法写成。企业已经在使用它来跟踪 汽车 维修客户服务、规划机场交通和连接 社会 媒体数据与银行客户。它可以在Spark或Hadoop上运行。
14.TensorFlow
TensorFlow是一个谷歌的开源人工智能工具。它提供了一个使用数据流图进行数值计算的库。它可以运行在多种不同的有着单或多CPU和GPU的系统,甚至可以在移动设备上运行。它拥有深厚的灵活性、真正的可移植性、自动微分功能,并且支持Python和c++。它的网站拥有十分详细的教程列表来帮助开发者和研究人员沉浸于使用或扩展他的功能。
15.Torch
Torch将自己描述为:"一个优先使用GPU的拥有机器学习算法广泛支持的科学计算框架",它的特点是灵活性和速度。此外,它可以很容易的通过软件包用于机器学习、计算机视觉、信号处理、并行处理、图像、视频、音频和网络等方面。它依赖一个叫做LuaJIT的脚本语言,而LuaJIT是基于Lua的。
欢迎关注~
微信公众号: IT百战程序员 ,免费提供人工智能、大数据、云计算等资料~~不管你在地球哪个方位,欢迎你的关注!